Fall 2020 Math 680D:5 1

Lecture 5 - Coloring Planar Graphs

In 1852 Francis Guthrie observed that England region map can be colored with 4 colors such that any two
regions sharing a border are colored differently. He observed that in general, one need at least 4 colors for
coloring any map and came with the following problem.

1: Color states in Midwest and the silly map. Can you do Midwest with just three colors?

Four Color Problem (Francis Guthrie). Regions of any planar map can be colored with four colors such
that any two regions that share a common border are colored differently.

Kempe chain: Let G be a graph, ¢ its proper coloring and ¢; and ¢y two colors. Let H be a maximal (in
inclusion) connected subgraph of G such that for every v € V/(H) holds ¢(v) € {c1, ca}. Define a coloring g for
every vertex v € V(G) in the following way:

c1 if v e V(H) and ¢(v) = ca,
o():=qcy ifveV(H) and p(v) =c1,

p(v) otherwise.

Due to the maximality of H, o is a proper coloring. We call H a Kempe chain. Note that H is a component of
the subgraph induced by ¢;- and co-colored vertices. We usually denote this graph by H(cq, ¢2).

2: Find a red-blue Kempe chain and switch the colors.
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A classical example for Kempe chains is the proof of the Five Color Theorem.

Theorem 1 (Heawood). Every planar graph is 5-colorable.

3: Prove the theorem using Kempe chains and degeneracy.
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Theorem 2 (Heawood). A planar triangulation with every vertex of even degree is 3-colorable.
‘/\/\_/—A—’\__.

Proof postponed to nowhere-zero integer flows class.

In 1969, Heesch presented the Discharging method and in 1977 using this method Appel and Haken succeeded
in solving the Four Color Theorem using hard to verify proof. In 1995, Robertson, Sanders, Seymour and
Thomas gave a new proof still based on computer assistant but a significantly shorter one.

Four Color Theorem (Appel and Haken). Regions of any planar map can be colored with four colors such
that any two regions that share a common border are colored differently.

Theorem 3 (Grotzsch). Every planar traingle-free is 3-colorable.

The original proof was technical. We present a short proof using by bound of Kostochka and Yancey. If G is a
4-critical graph on n vertices with m edges, then
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Proof. Let G be a minimal counterexample on n vertices, m edges, embedded in the plane with f faces. By the

minimality, G is a 4-critical grapi————

4: Show that G has no 4-faces. Hint: identify opposite vertices.
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5: Give a lower bound on the number of edges using the number of vertices.
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6: Finish the proof.
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1 Discharging method

Discharging is a very powerful technique for proving various theorems about planar graphs (almost anything
about planar graphs).

Usually rather technical proofs, but great fit for the plane and local constraints like in coloring.

Discharging proof outline

e a minimum counterexample G

e List reducible configurations which cannot occur in G.

e Assign initial charge to vertices and faces of G.

e sum of all charges is negative (by Euler’s formula).

e Apply some rules for shifting the charges between vertices and faces while preserving the total sum.

e Argue that if G has no reducible configuration, then the final charge of every face and every vertex is
nonnegative (this gives a contradiction)

The proof gives that every planar graph contains at least ine of the reducible configurations.
Example:

Theorem 4. Let G be a planar graph. Then x(G) < 5.

Proof. Let G be a counterexample. We may assume that G is 6-critical, and as critical graphs are without
clique-cuts, so G has no separating 3-cycle. It also gives minimum degree at least 5.

Reducible configurations. 7: Show that a 5-vertexr v incident with two triangles T1,T> sharing an edge
containing v is reducible.
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Initial charges. By ¢(f) we denote the length of a facial walk around f where bridges are counted twice. We
define the initial charges ch for a vertex v and a face f in the following way:

ch(v) =deg(v) —6 and ch(f) =2((f)—6.

8: Verify that the sum of all charges is negative by Euler’s formula.

9: What as positive and what has negative charge? What are charges of vertices and faces with small degree
or /7

Discharging rules. We use only one discharging rule to redistribute the initial charge to increase the charge
on 5-vertices. A face of size 4 or more, is a 4T -face.

Rule 1. Every 4T -face sends charge % to every adjacent 5-vertex.

Final charges We use ch*(x) to denote the final charge of a vertex or face x.

10: Show that ch*(x) > 0 for every vertex and face z.
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